مدل سازی تراز آب دریاچه ارومیه با استفاده از مدل های هوش مصنوعی

thesis
abstract

ازجمله مشخصه¬های مهم هر دریاچه تراز سطح آب آن است. آگاهی از نحوه نوسانات تراز امری موثر در تفسیر و بررسی مسایل مرتبط از جمله ریسک¬پذیری تاسیسات و سازه¬های وابسته، تغییرات ذخیره آبی دریاچه، ساخت و سازهای ساحلی و مباحث زیست محیطی می¬باشد. هرچند که با استفاده از اندازه¬گیری¬های مکرر تراز آب می¬توان دید کلی نسبت به تغییرات آن بدست آورد، اما شبیه¬سازی این متغیر امکان بررسی بیشتر آن، بخصوص تحت سناریوهای مختلف را فراهم می¬آورد. از جمله مباحثی که در سال¬های اخیر مورد توجه بسیاری از محققین و طراحان بوده است، بررسی سطح تراز آب دریاچه ارومیه می¬باشد که در سال¬ها و حتی در ماه¬های آینده در چه ارتفاعی قرار خواهد گرفت و چه بسا که با استفاده از این تراز بتوان مساحت دریاچه ارومیه و همچنین خط تراز دریاچه را مشخص نمود فلذا برای این منظور بکارگیری تکنولوژی هوش مصنوعی در مدل¬های هیدرولوژیکی مورد توجه بوده و توسعه یک مدل برای پیش¬بینی هیدرولوژیکی مبتنی بر سوابق گذشته بسیار مهم می¬باشد. ارایه الگوهای نو و به کارگیری تکنیک¬های پیشرفته می¬تواند موجب ایجاد تحول در برآورد این سیستم دینامیک و غیر خطی شود. هدف از تحقیق حاضر ارائه روشی جدید در پیش¬بینی تراز آب دریاچه ارومیه و برآورد تراز آب دریاچه ارومیه با تاخیرها، تعداد نرون¬ها و لایه¬های پنهان مختلف با استفاده از ساختار مدل برتر در شبیه¬سازی تراز در حوضه¬ی دریاچه ارومیه با استفاده از شبکه¬های عصبی مصنوعی از نوع پرسپترون چند لایه (mlp) و تابع پایه شعاعی(rbf) و استفاده از تراز سطح آب دریاچه ارومیه به عنوان ورودی می¬باشد. مدل¬های شبکه عصبی عملکرد خوبی در زمینه تحلیل تراز آب دریاچه¬ها دارند. در این تحقیق از مدل¬های هوش مصنوعی که بر حسب تاخیرها، تعداد نرون¬ها ولایه¬های مختلف می¬باشند، جهت مدل¬سازی و پیش¬بینی دقیق تراز آب دریاچه ارومیه در آینده استفاده شده است. پس از استخراج تراز آب دریاچه ارومیه و تعیین ماه¬های مختلف از سال¬های مورد نظر، تراز آب دریاچه ارومیه بعنوان ورودی های شبکه عصبی استفاده گردیده که پس از آموزش و آزمون آنها ، ساختار هر دو نوع شبکه عصبی با توجه به شبیه سازی تراز آب مورد ارزیابی دو شاخص عملکرد ضریب همبستگی (r^2) و مجذور میانگین مربعات خطا (rmse) قرار گرفت که با در نظر گرفتن تاخیرهایی از یک تا 12 ماه و نرون¬های متفاوت مدل mlp به عنوان مدل برتر انتخاب شد که از ساختار این مدل برای پیش¬بینی تراز آب دریاچه ارومیه استفاده گردید. برای پیش¬بینی تراز سطح آب دریاچه ارومیه در آینده پارامتر ورودی همانند دو مدل قبلی تراز سطح آب دریاچه ارومیه بود که با داشتن تعداد نرون، تعداد لایه پنهان و تاخیرهای متفاوت بهترین مدل برای پیش بینی از طریق مطالبقت داده¬های پیش¬بینی شده با داده¬های مشاهداتی تراز سطح آب و بدست آوردن ضریب همبستگی (r^2) و مقدار مجذور میانگین مربعات خطا (rmse) انتخاب شد که مدل با تاخیر 36-12 با بیشترین شاخص عملکرد نمونه بهترین پیش¬بینی¬ها را برای 12 ماه آینده از خود نشان داد و همچنین مدل¬هایی که برای پیش¬بینی 24 ماه آینده انتخاب شده بودند شاخص¬های عملکرد مناسبی را از خود نشان ندادند که شاید علت آن نوع ساختار مدل می¬باشد که برای پیش¬بینی¬های کوتاه مدت مناسب است. همچنین در پیش¬بینی¬ها مشخص گردید که نرون¬های بالا عملکرد مناسبی را از خود نشان ندادند.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

تحلیل و پیش بینی نوسانات تراز سطح آب دریاچه ارومیه با استفاده از مدل ARIMA

این تحقیق به منظور بررسی نوسانات تراز سطح آب دریاچه ارومیه و ارائه مدلی مناسب جهت پیش بینی نوسانات تراز سطح آب صورت گرفته است. آمار ماهانه تراز آب دریاچه در دوره آماری (1392- 1345) مورد استفاده قرار گرفت و همگنی آنها توسط آزمون توالی بررسی شد. سپس داده‌ها مورد آزمون‌های ایستایی میانگین و واریانس قرار گرفت تا با ایجاد مرتبه در سری، ناایستایی سری از بین برود. رفتار ماهانه سری با استفاده از تفاضل‌...

full text

مدل سازی نوسانات روزانه سطح آب دریاچه ارومیه با استفاده از مدل ماشین یادگیری افراطی

در دهه­های اخیر به دلیل افزایش بی­رویه برداشت از منابع آب سطحی و زیرزمینی، جلوگیری از ورود منابع آب سطحی به دریاچه ارومیه و همچنین تغییرات اقلیمی، سطح آب دریاچه ارومیه کاهش یافته و سبب ایجاد بحران آبی و زیست محیطی در منطقه گردیده است. بنابراین، مدل­سازی نوسانات سطح آب دریاچه ارومیه برای برنامه­ریزی و مدیریت منابع آب آن ضروری می­باشد. هدف از این تحقیق پیش­بینی نوسانات سطح آب دریاچه ارومیه برای ی...

full text

مدل سازی رواناب روزانه حوضه نازلو چای در غرب دریاچه ارومیه با استفاده از مدل Tank

سابقه و هدف: پس از انقلاب کامپیوتری دهه 1960 مدل‌سازی هیدرولوژیک شکل تازه‌ای به خود گرفت و می‌توان یکی از اولین تلاش‌های موفق را مدل دانشگاه استنفورد SWM دانست. مدل‌های بارش رواناب به‌عنوان یکی از مهم‌ترین ابزارهای تصمیم‌گیری در مدیریت حوضه‌های آبریز همواره موردتوجه بوده‌اند. در این مطالعه از مدل بارش رواناب روزانه تانک در حوضه آبریز رودخانه نازلو چای، در غرب دریاچه ارومیه استفاده شده است. اهمی...

full text

تحلیل رابطه تراز آب دریاچه ارومیه با سیگنال های اقلیمی

از جمله مشخصه های مهم هر دریاچه، تراز سطح آب آن است. آگاهی از نحوه نوسانات تراز آب امریموثر در تغییر و بررسی مسایل مرتبط از جمله تغییرات ذخیره آب دریاچه – ساخت و ساز های ساحلیو مباحث زیست محیطی است. در این تحقیق به بررسی تاثیر سیگنال های هواشناسی بر نوسان آبدریاچه ارومیه و دبی حوضه آبریز دریاچه ارومیه پرداخته شده است. داده های مورد استفاده در این تحقیق به علت حجم زیاد در فواصل زمانی سال های 195...

full text

شبیه سازی تراز سطح آب مخزن چاه نیمه چهارم با استفاده از مدل های هوش مصنوعی

مخازن چاه¬نیمه متشکل از چهار فرورفتگی طبیعی در دشت سیستان می باشندکه به منظورکنترل سیلاب و ذخیره آب رودخانه هیرمند برای تأم‍‍‍ین آب شرب و کشاورزی ساکنان منطقه مورد بهره-برداری قرار می¬گیرند. از جمله مشخصه¬های مهم هر مخزن تراز سطح آب آن است. آگاهی از نحوه نوسانات تراز، موثر در تفسیر و بررسی مسایل مرتبط از جمله ریسک پذیری تأسیسات و سازه¬های وابسته، تغییرات ذخیره آبی دریاچه، ساخت و سازه¬های ساحلی ...

ارزیابی مدل های تلفیقی arma-arch و bl-arch در مدل سازی تراز سطح آب دریاچه ارومیه

اکثر مدل­های غیرخطی بر پایه مدل­سازی میانگین خطا توسعه یافته­اند اما مدل­های غیرخطی خودهمبسته با واریانس شرطی، بر پایه مدل­سازی واریانس داده­های سری باقی­مانده استوار هستند. این مدل­ها با ترکیب شدن با مدل­های خطی، تا حدودی دقت مدل­سازی و پیش بینی ها را افزایش می­دهند. در این مطالعه با استفاده از داده­های تراز سطح آب دریاچه ارومیه در دوره آماری 91-1352، مدل­های خودهمبسته با میانگین متحرک و دو خط...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - دانشکده کشاورزی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023